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SUMMARY

EF-hand calcium sensors respond structurally to
changes in intracellular Ca2+ concentration, trig-
gering diverse cellular responses and resulting in
broad interactomes. Despite impressive advances
in decoding their structure-function relationships,
the folding mechanism of neuronal calcium sensors
is still elusive.We used single-molecule optical twee-
zers to study the folding mechanism of the human
neuronal calcium sensor 1 (NCS1). Two intermediate
structures induced by Ca2+ binding to the EF-hands
were observed during refolding. The complete
folding of the C domain is obligatory for the folding
of the N domain, showing striking interdomain
dependence. Molecular dynamics results reveal the
atomistic details of the unfolding process and
rationalize the different domain stabilities during
mechanical unfolding. Through constant-force
experiments and hidden Markov model analysis,
the free energy landscape of the protein was recon-
structed. Our results emphasize that NCS1 has
evolved a remarkable complex interdomain coopera-
tivity and a fundamentally different folding mecha-
nism compared to structurally related proteins.

INTRODUCTION

EF-hand calcium binding proteins regulate diverse processes in

almost every aspect of a cell life cycle. These proteins relay

cellular changes of Ca2+ through intra- or interdomain rearrange-

ments that allow them to interact with binding partners. Despite

detailed structure characterization and elucidation of switch

mechanisms in the native state (Capozzi et al., 2006; Grabarek,

2006), the folding mechanism of this large family of proteins is

widely unexplored, with only a subset of systems studied (Ara-

vind et al., 2008; Mukherjee et al., 2007; Stigler et al., 2011;

Suarez et al., 2008; Yamniuk et al., 2007). To rationalize the

conformational response of sensory EF-hand proteins to
Structure
changes in Ca2+ concentration and its relation to function, the

details of their folding mechanism can prove essential.

The emerging family of EF-hand neuronal calcium sensor

(NCS) proteins currently includes 15 members. These are pri-

marily expressed in neurons, except recoverin and guanylyl-

cyclase-activating proteins, which are expressed in the retina

(Ames and Lim, 2012; Burgoyne, 2004; Reyes-Bermudez et al.,

2012). Neuronal calcium sensor 1 (NCS1) is the primordial mem-

ber of the NCS family and is present in many organisms ranging

from yeast to humans (Burgoyne, 2004). NCS1 is targeted to the

plasma membrane by an N-terminal myristoylation group

(McFerran et al., 1999) and is reported to bind an array of inter-

action partners (Burgoyne, 2007). It is involved in the regulation

of neurotransmitter release (McFerran et al., 1999) and is linked

to disorders such as schizophrenia (Koh et al., 2003) and autism

(Piton et al., 2008), as well as to cognitive abilities such as

learning and memory (Gomez et al., 2001; Handley et al., 2010;

Saab et al., 2009; Weiss et al., 2010). Recently, functions in the

young heart have also been reported (Nakamura et al., 2011).

Two domains can be identified in NCS1 on the basis of its EF-

hand motifs: the N domain (residues 1–94, a helices H1–H5)

consisting of EF1 and EF2, and the C domain (residues 96–

190, a helices H6–H9), consisting of EF3 and EF4 (Figure 1A).

The two domains are separated by a short loop containing a

conserved glycine that may act as a hinge, allowing domain

movements (Heidarsson et al., 2012a). NCS1 is activated by

binding three Ca2+ ions, which induces significant structuring

from a predominantly molten-globule-like apo form, revealing a

hydrophobic ligand-binding pocket spanning both domains

(Aravind et al., 2008, Heidarsson et al., 2012a). While EF1 is

unable to bind Ca2+ because of a conserved Cys-Pro mutation,

EF2 and EF3 bind Ca2+ with high affinity and can also bind Mg2+

at resting conditions, whereas EF4 binds only Ca2+ and with

lower affinity (Aravind et al., 2008). The folding mechanism of

NCS1 has been characterized at equilibrium in bulk studies,

showing individual cooperative domain unfolding with a less sta-

ble N domain (Aravind et al., 2008; Heidarsson et al., 2012a;Mur-

alidhar et al., 2005). The kinetics and mechanistic details of the

folding process have, however, remained elusive for the entire

NCS family.

Deciphering the intricacies of protein folding pathways hidden

in the ensemble average provided by traditional bulk techniques
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Figure 1. Manipulating Single NCS1 Molecules

(A) Solution structure of NCS1 (PDB code 2LCP) showing the two EF domains

containing pairs of EF-hands (EF1-EF2 in green, EF3-EF4 in blue); EF-hands

labeled EF2-EF4 have a Ca2+ ion bound (black spheres). NCS1 is manipulated

with polystyrene beads by means of DNA molecular handles. During the

experiment, the molecule is stretched and relaxed by moving the pipette.

(B) Force-versus-extension cycle showing stretching (red, 100 nm s�1) and

relaxing (black, 50 nm s�1) of a NCS1 molecule. Folding from the unfolded

state (U) to the native state (N) occurs via two detectable intermediate states,

I1 and I2. Gray lines are WLC model fits to the data, and the green and blue

shaded areas correspond to the N and C domains, respectively. Color-coded

arrows indicate the pulling/relaxing directions. The unfolding from N to U

occurs in a three-state manner, as state I1 is mechanically more stable than

state I2 and unfolds at forces at which I2 cannot withstand the load.

See also Figures S1–S3.

Structure

Single-Molecule Folding of a Calcium Sensor

Please cite this article in press as: Heidarsson et al., Single-Molecule Folding Mechanism of an EF-Hand Neuronal Calcium Sensor, Structure (2013),
http://dx.doi.org/10.1016/j.str.2013.07.022
is a daunting task. This is especially true when studying the

complicated sequence of events that characterizes the folding

mechanism of large multidomain proteins, such as NCS1.

Different domains may fold at different rates via different path-

ways and may crosstalk through elaborate mechanisms that in-
2 Structure 21, 1–10, October 8, 2013 ª2013 Elsevier Ltd All rights re
crease the level of complexity in the observed experimental

signals. The advent of single-molecule techniques, such as opti-

cal tweezers, has provided an innovative perspective on the pro-

tein folding problem, allowing researchers to go beyond the

ensemble average and dissect folding mechanisms in unprece-

dented detail (Borgia et al., 2008; Bustamante et al., 2004; Ritort,

2006; Schuler and Eaton, 2008). Using optical tweezers, it is now

possible to follow the folding trajectories of individual proteins

through mechanical manipulation and characterize the inter-

mediate states populated by the molecule during its journey to

the native state. (Bechtluft et al., 2007; Cecconi et al., 2005;

Gao et al., 2012; Heidarsson et al., 2012b; Shank et al., 2010; Sti-

gler et al., 2011). Conditions at which single-molecule manipula-

tion experiments are performed, including the application of a

force acting on the distance between two atoms, can be closely

reproduced in silico. Molecular dynamics (MD) simulations and

single-molecule force techniques have proved powerful and

are complementary tools in characterizing unfolding at single-

molecule level and in investigating the effect of mechanical

forces on proteins (Forman et al., 2009; Marszalek et al., 1999;

Schlierf et al., 2010).

Here, we use optical tweezers experiments and steered MD

(SMD) simulation to study the folding and unfolding trajectories

of individual NCS1 molecules and decipher the role in folding

of each EF-hand Ca2+-binding site. Under our experimental

conditions, NCS1 exhibits a complex multistate folding mecha-

nism characterized by a precise sequence of events induced

by Ca2+ binding. Proper folding of EF3 and EF4 is a strict require-

ment for subsequent folding of the N domain. Under tension, the

N domain is the first to unfold, followed at higher forces by the C

domain. SMD simulation results reveal at the atomic level the

sequence of events that lead to the mechanical unfolding of

the molecule. Through constant-force experiments and hidden

Markov model (HMM) data analysis, the salient features of the

free energy landscape of NCS1 are reconstructed. The results

demonstrate that NCS1 has a remarkably different foldingmech-

anism from structurally related proteins.

RESULTS

NCS1 Folds through a Multistate Pathway
Single NCS1 molecules were manipulated by means of �500

base pair double-stranded DNA handles that were attached to

engineered cysteines, producing protein-DNA chimeric con-

structs (Figure 1A). A variant of NCS1 was generated in which

Cys38 was replaced by serine and two cysteines were engi-

neered at positions 4 and 188, effectively allowing force to be

applied to the entiremolecule in a controlledmanner. This variant

has very similar stability, fold, and calcium binding properties

compared to the wild-type (WT) protein, as indicated by equilib-

rium unfolding experiments, nuclear magnetic resonance (NMR)

spectroscopy, and Ca2+-binding competition assays, respec-

tively (Figure S1 available online).

Individual molecules were stretched and relaxed with a

custom-built optical tweezers setup that operates by directmea-

surement of light momentum (Figure 1A; see Experimental Pro-

cedures for details). The kinetic profiles of NCS1 unfolding and

refolding were characterized through constant-velocity experi-

ments. Under our experimental conditions, we found that
served
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NCS1 unfolds in an apparent three-state process and refolds in

a four-state process via two distinct refolding intermediates, I1

and I2 (Figure 1B). Fluctuations between the different molecular

states become more evident at slower stretching/relaxation

speeds (Figure S2). Sometimes, I1 is too short lived to be

detected in our traces (data not shown).

The differences in contour length (DLc) associated with each

refolding and unfolding transition were estimated by fitting 150

force-versus-extension curves with the worm-like-chain (WLC)

model of polymer elasticity (Bustamante et al., 1994; Marko

and Siggia, 1995). Thesemodel values, DLc
WLC (gray lines in Fig-

ure 1B), were then compared to the nominal values, DLc
0 (Cec-

coni et al., 2005; see Experimental Procedures for details). The

decrease in contour length associated with the low force relaxing

event (I1 to N) was estimated to be DLc
WLC = 29 ± 2 nm (all errors

are SDs), which is consistent with the refolding of the N domain

(DLc
0 = 30 nm). On the other hand, DLc

WLC estimated for the U to

I2 and I2 to I1 transitions are 28 ± 2 nm and 6 ± 2 nm, respec-

tively. Summed together (34 ± 3 nm), these values of DLc
WLC

are consistent with the refolding of the entire C domain (DLc
0 =

33 nm). The WLC analysis of stretching traces yielded a DLc
WLC

of 30 ± 2 nm for the low force transition (N to I1) and DLc
WLC of

34 ± 2 nm for the high force transition (I1 to U); these values

are consistent, respectively with the unfolding of the N and C

domains, respectively (see DLc
0 above).

To further investigate which parts of the protein were involved

in the different unfolding and refolding events, we generated two

variants in which the sizes of the N and C domains were selec-

tively altered. In NCS110Gly, ten glycine residues were inserted

into an unstructured loop that connects EF3 and EF4, effectively

changing the size of the C domain by 10%. In NCS138–188, no

cysteine was engineered at position 4 and one DNA handle was

attacheddirectly to the nativeCys38; in thisway, only 56 residues

of the N domain were subject to force, corresponding to �40%

change. Compared to NCS1, both for unfolding and refolding,

the high force transitions were longer in NCS110Gly and the low

force transitions were shorter in NCS138–188 (Figure S3). These

data, along with the WLC model fitting results, suggest that the

C domain is mechanically more stable than the N domain and

unfolds and refolds at higher forces. These observations are

consistent with results obtained in bulk studies where the C

domain was shown to be thermodynamically more stable than

the N domain (Heidarsson et al., 2012a). Our single-molecule

data also indicate that, while the N domain refolds in a single

cooperative transition, the C domain folds in two steps. The

size of these steps, however, is not consistent with the sequential

foldingof EF3andEF4hands. The change in contour length asso-

ciated with the first refolding event should, in this case, be either

13.7nm, if EF3 refolds first, or 16.2 nm, if EF4 refolds first; instead,

it is 28 ± 2 nm. Hence, our data suggest a folding mechanism in

which the C domain first undergoes a major conformational

change (U to I2 transition), followed by a minor rearrangement

(I2 to I1 transition) that leads to the native structure.

Role of EF-Hands in NCS1 Folding
We have shown that the folding pathway leading to the native

state of NCS1 includes intermediate states, but the nature of

the conformational changes that occur in these transitions has

not been revealed. A reasonable possibility is that binding of
Structure
Ca2+ ions into the EF sites induces or stabilizes these states.

Binding of Ca2+ is known to cause conformational changes in

EF-hands (Capozzi et al., 2006; Gifford et al., 2007), and in the

absence of Ca2+, the apo form of NCS1 has characteristics of

a molten-globule-like conformation (Aravind et al., 2008). The

canonical EF-hand has an�12-residue binding loop where posi-

tions 1 and 12, which are invariably aspartates or glutamates, are

necessary for calcium coordination (Gifford et al., 2007). For

NCS1, these residues are D73/E84 (EF2), D109/E120 (EF3),

and D157/E168 (EF4). To examine the role of Ca2+ binding in

the folding of NCS1, we disabled each Ca2+ site individually

(see Experimental Procedures and Supplemental Information)

bymutating positions 1 and 12 to alanine and glutamine, respec-

tively. This yielded the mutants NCS1EF2, NCS1EF3, and

NCS1EF4, where the superscript indicates the disabled EF site.

The disruption of the calcium binding properties is apparent

from the 1H,15N-heteronuclear single quantum correlation

(HSQC) peak positions and intensities of the glycine residues

in position 6 in the binding loop, which have a characteristic

downfield shifted chemical shift (Figures S1 and S4; Table S1).

We then performed constant-velocity experiments on each of

these variants.

As expected from the results described earlier, NCS1EF2

clearly exhibited defective folding in the N domain (I1 to N tran-

sition) compared to NCS1, while C-domain folding (U to I1 tran-

sitions) apparently was unaltered, as it displayed similar contour

length changes (DLc
WLC = 32 ± 2 nm; number of events, n = 40),

and it could still unfold at high force (Figures 2A and 3). The N

domain could partially fold into a nonnative structure and would

unfold at low force either gradually or in a sharp cooperative

event. NCS1EF3 force-versus-extension trajectories, on the other

hand, displayed no detectable native transitions (Figure 2B).

Both during relaxation and stretching, this variant displayed

only small fluctuations that did not lead to globular or collapsed

states. This behavior is consistent with results obtained in bulk

(Muralidhar et al., 2005), where the stability of this variant resem-

bled the apo state and where Ca2+ no longer exerted any stabi-

lizing effect. Indeed, in our experiments, the apo form of NCS1

showed almost identical behavior to that of NCS1EF3 (Figure 2B,

inset). This is consistent with lowered 1H,15N-HSQC peak inten-

sities for the glycines in position 6 of the EF2 and EF4 binding

loops for the NCS1EF3 variant when compared to WT NCS1,

NCS1EF2, and NCS1EF4, suggesting altered calcium affinity in

the EF2 and EF4 binding sites (Figure S4; Table S1). The most

interesting behavior was observed for NCS1EF4. This variant

always folded into I2 but could not fold into I1 (Figure 2C). In

fact, the C domain of NCS1EF4 showed only partial folding

(DLc
WLC = 29 ± 3 nm, N = 30) and did not display the same me-

chanical stability as inWTNCS1 (Figure 3). For this variant, at low

forces (�6 pN), the N domain folded into a structure as compact

as that of the native state (DLc
WLC = 31 ± 3 nm, n = 25) (Figure 2C)

but lacking its stability (Figure 3). These data indicate that Ca2+

binding to the EF4 site is responsible for the I2 / I1 transition

and that it is mandatory for proper folding of both domains. Bind-

ing of Ca2+ to EF3 is instead responsible for the U/ I2 transition

and seems crucial for the conformational stability of the entire

molecule. The behaviors displayed by the NCS1EF2 and NCS1EF4

variants confirm that the folding of the N domain is dependent on

the folding of the C domain, whereas the C domain can fold
21, 1–10, October 8, 2013 ª2013 Elsevier Ltd All rights reserved 3



Figure 2. Unfolding/Refolding Trajectories of NCS1 Variants with Disabled Ca2+ Binding Sites

(A) Force-versus-extension cycle of NCS1EF2 at 10 nm s�1. The N domain is unable to fold correctly, while the C domain folds properly into both I2 and I1, as

indicated by its mechanical strength and change in contour length on unfolding.

(B) Force-versus-extension cycle of NCS1EF3 at 20 nm s�1. Both theN andCdomains failed to properly fold. The inset showsNCS1 folding in the absence of Ca2+.

(C) Force-versus-extension cycle of NCS1EF4 at 20 nm s�1, showing the molecule folding into I2, but not into I1, and then at low force, the N domain folds into a

structure that is similar in extension to its native state but mechanically weaker. Color-coded arrows indicate pulling/relaxing directions.

See also Figure S4 and Table S1.
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independently. Notice that performing the experiments with the

addition of 5 mM MgCl2 did not change appreciably the unfold-

ing/refolding behavior of the molecule (Figure S5).

Atomistic Simulations
A 0.7 ms all-atom SMD simulation has been performed to under-

stand at the atomistic level the structure and the unfolding

mechanism of the Ca2+-bound state of NCS1 and to give deeper

insight into the optical tweezers observations. The all-atom SMD

simulation was performed in explicit solvent, starting from the

NMR structure (Protein Data Bank [PDB] code 2LCP) retaining

the calcium ions and solvated in 44952 TIP3P (Jorgensen

et al., 1983) water molecules plus counterions to neutralize the

system. The two termini of the protein were attached to ideal

springs and pulled apart at a particularly low pulling speed of

0.5 Å/ns; see Experimental Procedures for details. Structural

changes during the simulation were monitored by evaluating

the distance root-mean-square (DRMS) deviation of the back-

bone with respect to the initial structure. DRMS deviations for

the whole protein, N domain, and C domain are shown in

Figure 4A (indicated in black, green, and blue, respectively). In

agreement with experimental results, the SMD trajectory indi-

cates that the N domain is mechanically less stable than the C

domain (Figures 4A and 4B). During the first 150 ns, the C-termi-

nal tail (residues 176–190) detached from the C domain. Subse-

quently, the N domain started losing its native structure:

specifically, helix 1 (H1) detached from the protein core between

150 and 200 ns, followed by H2 in the subsequent 50 ns (Fig-

ure 4C). The unfolding of H2 competed with the detachment of

H9 from the C domain. However, the C domain conserved its

structure, as H9 remained stably ‘‘packed’’ between H6 and

H8 and anchored to the protein core by the calcium binding

site of EF4. Between 250 and 350 ns, the rest of the EF1-hand

unfolded; namely, the loop between H2 and H3 (b1) was

detached from the Ca2+-binding site loop of EF2 (b3), and the

H3 helix was detached from the rest of the protein (Figure 4C).

During the detachment of b1, the H9 helix was partly disrupted.

H9 was further disrupted as H4 unfolded between 400 ns and

500 ns. At 550 ns, the N domain (EF1 and EF2) was largely
4 Structure 21, 1–10, October 8, 2013 ª2013 Elsevier Ltd All rights re
unfolded, EF3 was properly folded, and EF4was partly disrupted

(Figure 4C). New (nonnative) contacts are observed between

residues 85–120 and 130–140 at 550 ns (see map in Figure 4B),

which are due to the highly mobile loop connecting EF3 and EF4

approaching the protein core and the collapsing of the H6 and

H8 occurring concurrently with the unfolding of the N domain

(Figure 4C). Notice that the first unfolding event observed in

the MD simulations—that is, the detachment of the C-terminal

tail—concerns a region of the protein that is poorly defined in

the NMR structure, as the last six residues had no observable

nuclear Overhauser effects (NOEs) that could be used for

distance restraints (Heidarsson et al., 2012a). Analysis of the

MD unfolding trajectory reveals a key role played by the triple-

helix structure H6-H9-H8 during the unfolding of NCS1. The H9

is docked between the H8 and H6 and anchored to the protein

core by the calcium binding site of EF4. This triple-helix structure

appears to be themain determinant of themechanical stability of

the C-domain, causing it to unfold at higher forces in the optical

tweezers experiments.

Equilibrium Unfolding and Refolding Trajectories of
NCS1
In constant-force experiments, NCS1 can be observed to fluc-

tuate at equilibrium between different molecular states. In these

experiments, the applied force is kept constant by a feedback

mechanism while changes in the extension of the molecule, as

it samples different conformations, are monitored in real time

(Figure 5A). Using this technique, we collected 173 extension-

versus-time traces from roughly 50 individual molecules. A

distinct population shift from U to N is induced by decreasing

the tension applied to the molecule. To extract thermodynamic

and kinetic information, we analyzed each extension-versus-

time trace individually by means of an adapted HMM algorithm

(Rabiner, 1989), which estimates the transition rates between

the different molecular states, together with the mean value

and SD of the extension associated with them. In contrast to

more traditional methods of analysis (i.e., discriminating the

states on the basis of a set of selected thresholds), the HMM

approach can distinguish between states very similar in
served



Figure 3. Unfolding Force Distributions for the N and C Domains of

NCS1 and Its EF-Hand Variants

Force distributions are shown in green and blue for the N and C domains,

respectively. The pulling speed was 100 nm s�1. The N domain unfolds at

10.6 ± 0.6 pN for the WT (111 events, 12 molecules), 6.8 ± 0.8 pN for NCS1EF2

(59 events, 4 molecules), and 7.4 ± 0.5 pN for NCS1EF4 (35 events, 3 mole-

cules). The C domain unfolds at 13.8 ± 1.0 pN for the WT (123 events, 11

molecules), 13.7 ± 0.9 pN for NCS1EF2 (50 events, 4 molecules), and 9.8 ±

0.5 pN for NCS1EF4 (35 events, 3 molecules). NCS1EF3 displayed only a single

low-force unfolding transition at the average force of 6.3 ± 0.3 pN (58 events,

3 molecules). Notice that addition of 5 mM MgCl2 to the pulling buffer did not

change appreciably the folding behavior of NCS1.

See also Figure S5.

Figure 4. Steered MD Simulation of NCS1 Unfolding

(A) DRMS deviation for the whole NCS1 (black), the N domain (green), and the

C domain (blue).

(B) Distance contact maps of the NCS1 Ca atoms evaluated at 0 and 550 ns.

Distances are in angstroms.

(C) Snapshots of the simulated unfolding trajectory of NCS1 at 250 ns, 350 ns,

and 550 ns. The alpha helices are labeled and shown in white (H1), yellow (H2

and H3), green (H4 and H5), blue (H6 and H7), and cyan (H8 and H9). Calcium

ions are shown as light green spheres.
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extension (such as I1 and I2) because it makes full use of the in-

formation about the time sequence of the observations.

From the rates, the salient features (energy of the intermedi-

ates, height and position of the barriers) of the free energy land-

scape can be reconstructed (Table 1; Figures 5B and S6). There

are two direct tests of the accuracy of such reconstruction. First,

the kinetic distances, as deduced by rates’ analysis, compare

very well to the observed jumps of the extension (Table S2). Sec-

ond, the total unfolding free energy difference DGU–N at zero

external force, after subtracting the free energy of stretching, is

101 ± 9 kJ mol�1, in agreement with the bulk spectroscopic

measurement of 87 ± 16 kJ mol�1 (Figure S1). Collectively, the

reconstructed landscape appears to be consistent with all our

experimental results.

DISCUSSION

The most probable native folding pathway of NCS1, based on

the aforementioned results, is depicted in Figure 6. During

folding, and in a Ca2+-dependent manner, the C domain (Fig-

ure 6, blue) collapses rapidly to a partially folded state (I2) con-
Structure
sisting of a fully folded, Ca2+-bound EF3 and a partially folded,

Ca2+-free EF4. Then, EF4 undergoes a conformational change

upon binding a Ca2+-ion, allowing proper folding of the C domain

(I1). Only when this event has occurred can the N domain (Fig-

ure 6, green) rapidly collapse into its native state.
21, 1–10, October 8, 2013 ª2013 Elsevier Ltd All rights reserved 5



Figure 5. Constant-Force Experiments

Reveal the Energy Landscape of NCS1

(A) Extension-versus-time traces of NCS1 at

different preset force values. Force modulates

the equilibrium between the different molecular

species.

(B) Sketch of the free energy landscape at zero

applied force, reconstructed using HMM analysis.

The different NCS1 structural states are indicated

together with the transition state barriers (B1-B2-

B3) that separate them. The distances among the

states are consistent both with the released

molecular extension observed in hopping experi-

ments and with the WLC model used to interpret

pulling experiments.

See also Figure S6 and Table S2.
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Our data suggest considerable interdomain crosstalk linked to

Ca2+-binding during NCS1 folding and significantly different

folding kinetics of each EF domain. The rapid collapse of the N

domain, subsequent to Ca2+ binding to EF4, is an example of

cooperativity between EF domains. With respect to functioning

as a calcium sensor, where structural changes in response to

changes in cellular calcium concentration is a prerequisite

(Nelson et al., 2001), the extreme conformational sensitivity of

NCS1 relayed to the entire molecule as revealed by single-mole-

cule experiments is an interesting property of this molecule. In

the presence of Mg2+, the calcium response of NCS1 will occur

in the nM-mM range. The extreme cooperative folding of the two

EF domains will enable NCS1 to become activated by a very

small change in Ca2+ concentration in the cell, allowing it to func-

tion as a Ca2+ sensor with a threshold response.

The reconstructed energy landscape of Figure 5 shows that, at

zero force, the U-to-I2 and I1-to-N transitions are downhill

folding processes, as previously reported in similar experiments

(Gebhardt et al., 2010), while the I2-to-I1 transition is a barrier-

limited event (Gao et al., 2011). Notice that the height of the

barriers in the reconstructed energy landscape depends on the
6 Structure 21, 1–10, October 8, 2013 ª2013 Elsevier Ltd All rights reserved
assumptions that are made for the anal-

ysis of the constant force data, in partic-

ular on the value of the pre-exponential

factor that is chosen (Gebhardt et al.,

2010; Gao et al., 2011). The molecular

rearrangements taking place during the

folding process of NCS1 are not known.

However, one can make speculations

based on the observed changes in

molecular extension and on the results

of the simulation. Analysis of the SMD

reveals how H9 affects the mechanical

unfolding of the C domain. The H9, which

forms part of the EF4 motif, is docked

between H8 and H6 in an intricate aro-

matic ring arrangement (Figure 4). These

interactions make H9 particularly stable,

protecting the C domain from unfolding.

One could speculate that H9 plays an

important role also in the refolding pro-

cess, driven by the hydrophobic collapse.
The major conformational change observed during the U-to-I2

transition could lead to the formation of the docking site, while

the I2-to-I1 transition could involve the docking of H9 between

H6 and H8. In this sense, the last snapshot reported in Figure 4C,

where the H6 and H8 are collapsed after the release of H9, could

be a conformation close to the I2 state.

On comparison, it becomes apparent that the different

members of the large family of EF-hand proteins have evolved

different folding mechanisms, despite significant structural

and sequential similarities. Three distinct domain-domain

arrangements of proteins with four EF-hands (two pairs orga-

nized in two domains) have been observed, namely, the

following: (1) Domains separated by a flexible linker that allows

variable orientation of the domains with respect to each other

(calmodulin [CaM] and related proteins), (2) domains separated

by a short U-shaped linker placing EF-hands in a tandem array

on one face of the protein (NCS family), and (3) domains

organized in a compact globular fold with the two domains on

opposite faces of the molecule (sarcoplasmic Ca2+-binding

proteins) (Gifford et al., 2007). The folding of CaM is the best

characterized of all EF-hand proteins (Grabarek, 2011; Junker



Table 1. Reconstruction of the Free Energy Landscape of NCS1

at Zero External Force

Transition xz / (nm) xz ) (nm) DG/kBT DGz/kBT

N / I1 6.8 ± 0.2 5.9 ± 0.8 30 ± 2 25 ± 1

I1 / I2 1.7 ± 0.8 2 ± 1 7 ± 3 15 ± 2

I2 / U 6.4 ± 0.2 9.7 ± 0.2 37.8 ± 0.8 24 ± 1

Kinetic and thermodynamic quantities were measured from the force-

dependence of transition rates. Errors are estimated from fit parameters’

uncertainties. kBT = 2.5 kJ mol�1. Double daggers indicate the transition

state.

Figure 6. Folding Mechanism of NCS1

Schematic representation of the native folding pathway of NCS1 under tension

is shown. The native state becomes increasingly populated at lower forces.
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and Rief, 2010; Lakowski et al., 2007; Rabl et al., 2002;

Stigler and Rief, 2012; Stigler et al., 2011). A comparison of the

structure and folding mechanisms of NCS1 and CaM under acti-

vating conditions is particularly interesting. On the single-mole-

cule level, it has been demonstrated that the two domains of

CaM can fold independently and in any order (Stigler et al.,

2011). In contrast, NCS1 folds through a strict sequence of

events, synchronized by ion binding, where the complete folding

of theC domain is crucial for subsequent folding of the Ndomain.

The difference in folding mechanism may stem from differences

in the structural architecture of the two proteins. Both proteins

have four EF-hands organized in two domains, but CaM has a

somewhat symmetrical structure, with a long alpha helix sepa-

rating the two almost identical N and C domains, which both

bind two Ca2+ ions (Mikhaylova et al., 2011; Slavov et al.,

2013). Instead, NCS1 is an asymmetrical molecule, as the N

domain binds only one Ca2+ ion and there is significantly more

interdomain contact (Figure 1A). These structural differences

between CaM and NCS1 might be at the basis of their different

folding mechanisms and may also be reflected in the functional

profiles of the two proteins. CaM is known to bind more than

300 targets (Shen et al., 2005) and is ubiquitously expressed,

while NCS1 is currently known to interact with approximately

20 proteins (Burgoyne and Haynes, 2012). The size difference

between the two interactomesmaybe correlatedwith the restric-

tions imposed on the folding of NCS1when compared to the rela-

tive freedom of CaM, which possibly allows CaM to sample a

larger number of substates to accommodate different ligands.

NCS1 is an important protein for neurotransmitter release and

for neuronal function, and its reaction to cellular cues is tightly

linked to calcium concentrations. The intricacies of its folding

pathway, revealed here from single-molecule optical tweezers

experiments and SMD simulations, have revealed important

interdomain cooperativity that shapes the ligand binding site,

as well as a calcium sensitivity that should be examined further.

A full repertoire of protein molecular behavior includes descrip-

tions of folding and unfolding pathways and may help explain

functional molecular responses.

EXPERIMENTAL PROCEDURES

Protein-DNA Chimera Preparation

The double-cysteine constructs of NCS1were engineered by using either aWT

pET-16b or a pseudo-WT pET-16b expression plasmid (with Cys38 replaced

by serine), by standard genetic techniques. The EF sites were individually

disabled by introducing the D73A/E84Q (EF2), D109A/E120Q (EF3), or

D157A/E168Q (EF4) mutations (De Cotiis et al., 2008; Woll et al., 2011; Aravind

et al., 2008; Muralidhar et al., 2005; Jeromin et al., 2004). The E. coli strain
Structure
BL21(DE3) was used to express unmyristoylated human NCS1 and variants

and was grown at 37�C in Luria-Bertani medium. The protein was purified as

described elsewhere (Kragelund et al., 2000), except for using protamine sul-

fate instead of streptomycin sulfate. Attachment of DNA to proteins and

coupling of protein-DNA chimeras to beads was performed exactly as in pre-

vious work (Cecconi et al., 2008). As criteria for choosing attachment sites, we

aimed to: (1) interfere as little as possible with the chemical composition of the

protein by performing, whenever possible, serine-to-cysteine mutations; and

(2) minimize the probability of a perturbation from the DNA handles by making

mutations distant to the structured regions. In the N terminus, the closest

serine is in position 4; thus, it was chosen as attachment site. On the other

end, in the C terminus, the closest serine is Ser178, close to the structured

part of the C domain. As a consequence, for the C domain, we chose

Gly188 as attachment point, because changing Leu189 or Val190 would

have changed the residue from highly hydrophobic to polar.
21, 1–10, October 8, 2013 ª2013 Elsevier Ltd All rights reserved 7
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Optical Tweezers Experiments

All experiments were performed using a custom-built optical tweezers instru-

ment with a dual-beam laser trap of 840 nm wavelength (Heidarsson et al.,

2012b). The experiments were conducted at ambient temperatures in

10 mM Tris, 250 mM NaCl, 10 mM CaCl2 at pH 7.0, or in the same buffer

with 0.5 mM EGTA excluding CaCl2, for measurements on the apo form of

NCS1. During the experiment, a 3.10 mm antidigoxigenin-coated bead (Spher-

otec) was held in the optical trap, while a 2.18 mm streptavidin-coated bead

(Spherotec) was held at the end of amicropipette by suction. The force applied

on the molecule was varied by moving the micropipette toward or away from

the optical trap by means of a piezoelectric flexure stage (MAX311/M, Thor-

labs). The applied force was determined by measuring the change in light

momentum of the laser beams leaving the trap (Smith et al., 2003). Changes

in the extension of the molecule were determined by measuring the distance

between the two beads (Smith et al., 2003). Constant-velocity traces were

collected at constant speeds from 5 to 1,000 nm s�1. Force and extension

of the molecule were recorded at a rate of 40 Hz. Only those molecules that

displayed the characteristic DNA overstretching transition at 67 pN were

used in the analysis (Cecconi et al., 2005).

In constant-force experiments, the force applied on the molecule was kept

constant through a force-feedback mechanism. The average force was

measured and compared to the desired force every 1 ms. Any difference

between these forces was compensated by moving the micropipette with

the piezoelectric flexure stage. In constant-force experiments, the applied

force and molecule extension were recorded at a rate of 100 Hz.

Changes in Contour Length

Nominal changes in contour lengths upon unfolding/refolding of NCS1 were

calculated as described elsewhere (Cecconi et al., 2005). Distances between

the Ca atoms in the corresponding residues in the native state were measured

using the solution structure of NCS1 (PDB code 2LCP). In partially unfolded

conformations, the length of the folded regions was determined using the

coordinates of 2LCP. The nominal contour length of each molecular state

was determined as Lc
0 = length of the folded region + (number of unfolded res-

idues3 0.36 nm). On an unfolding or refolding event, DLc was evaluated as the

difference in length of the protein before and after the transition.

MD Simulations

MD simulations were performed with NAMD (v2.8) (Phillips et al., 2005), by

using the CHARMM27 force field (MacKerell et al., 1998) for the protein and

the counterions and the TIP3P (Jorgensen et al., 1983) force field for water.

An unrestrained 8 ns simulation was performed starting from the first structure

of the NMR solution structures (PDB code 2LCP) (Heidarsson et al., 2012a).

The equilibrated structure was then used as the starting point for the SMD

simulation. In a SMD simulation, the two termini are connected to an ideal

spring with an elastic constant of 0.5 kcal/(mol Å2), and pulled apart at a speed

of 0.5 Å/ns. The full unfolding of the protein required a total simulation time of

0.7 ms (corresponding to about 500,000 hr of central processing units). A

detailed description of the simulation setup can be found in the Supplemental

Experimental Procedures.

HMM Analysis

HMM algorithms are a tool of choice for the interpretation of single-molecule

observed time series, either from fluorescence spectroscopy (Andrec et al.,

2003) or optical tweezers (Chodera et al., 2011). In our case, the use of

HMM is crucial because the two intermediates I1 and I2 could hardly be

discriminated based solely on the difference between their end-to-end exten-

sions. A total of 173 extension-versus-time traces from roughly 50 molecules

were used in our landscape reconstruction, with values of the constant force

ranging from 8.3 pN to 10.7 pN. The shortest trace lasted 22 s, and the longest

trace lasted 2,800 s. More details about the data analysis procedure are

described in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental information includes Supplemental Experimental Procedures,

six figures, and two tables and can be found with this article online at http://

dx.doi.org/10.1016/j.str.2013.07.022.
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Gebhardt, J.C., Bornschlögl, T., and Rief, M. (2010). Full distance-resolved

folding energy landscape of one single protein molecule. Proc. Natl. Acad.

Sci. USA 107, 2013–2018.

Gifford, J.L., Walsh, M.P., and Vogel, H.J. (2007). Structures and metal-ion-

binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs.

Biochem. J. 405, 199–221.

Gomez, M., De Castro, E., Guarin, E., Sasakura, H., Kuhara, A., Mori, I., Bartfai,

T., Bargmann, C.I., and Nef, P. (2001). Ca2+ signaling via the neuronal calcium

sensor-1 regulates associative learning and memory in C. elegans. Neuron 30,

241–248.

Grabarek, Z. (2006). Structural basis for diversity of the EF-hand calcium-bind-

ing proteins. J. Mol. Biol. 359, 509–525.

Grabarek, Z. (2011). Insights into modulation of calcium signaling by magne-

sium in calmodulin, troponin C and related EF-hand proteins. Biochim.

Biophys. Acta 1813, 913–921.

Handley, M.T., Lian, L.Y., Haynes, L.P., and Burgoyne, R.D. (2010). Structural

and functional deficits in a neuronal calcium sensor-1 mutant identified in a

case of autistic spectrum disorder. PLoS ONE 5, e10534.

Heidarsson, P.O., Bjerrum-Bohr, I.J., Jensen, G.A., Pongs, O., Finn, B.E.,

Poulsen, F.M., and Kragelund, B.B. (2012a). The C-terminal tail of human

neuronal calcium sensor 1 regulates the conformational stability of the Ca2+-

activated state. J. Mol. Biol. 417, 51–64.

Heidarsson, P.O., Valpapuram, I., Camilloni, C., Imparato, A., Tiana, G.,

Poulsen, F.M., Kragelund, B.B., and Cecconi, C. (2012b). A highly compliant

protein native state with a spontaneous-like mechanical unfolding pathway.

J. Am. Chem. Soc. 134, 17068–17075.

Jeromin, A., Muralidhar, D., Parameswaran, M.N., Roder, J., Fairwell, T.,

Scarlata, S., Dowal, L., Mustafi, S.M., Chary, K.V.R., and Sharma, Y. (2004).

N-terminal myristoylation regulates calcium-induced conformational changes

in neuronal calcium sensor-1. J. Biol. Chem. 279, 27158–27167.

Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein,

M.L. (1983). Comparison of simple potential functions for simulating liquid

water. J. Chem. Phys. 79, 926–935.

Junker, J.P., and Rief, M. (2010). Evidence for a broad transition-state

ensemble in calmodulin folding from single-molecule force spectroscopy.

Angew. Chem. Int. Ed. Engl. 49, 3306–3309.

Koh, P.O., Undie, A.S., Kabbani, N., Levenson, R., Goldman-Rakic, P.S., and

Lidow, M.S. (2003). Up-regulation of neuronal calcium sensor-1 (NCS-1) in the

prefrontal cortex of schizophrenic and bipolar patients. Proc. Natl. Acad. Sci.

USA 100, 313–317.

Kragelund, B.B., Hauenschild, A., Carlström, G., Pongs, O., and Finn, B.E.

(2000). 1H, 13C, and 15N assignments of un-myristoylated Ca2+-frequenin, a

synaptic efficacy modulator. J. Biomol. NMR 16, 85–86.

Lakowski, T.M., Lee, G.M., Okon, M., Reid, R.E., and McIntosh, L.P. (2007).

Calcium-induced folding of a fragment of calmodulin composed of EF-hands

2 and 3. Protein Sci. 16, 1119–1132.

MacKerell, A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D.,

Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., et al. (1998). All-atom empirical

potential for molecular modeling and dynamics studies of proteins. J. Phys.

Chem. B 102, 3586–3616.
Structure
Marko, J.F., and Siggia, E.D. (1995). Statistical mechanics of supercoiled DNA.

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 52, 2912–

2938.

Marszalek, P.E., Lu, H., Li, H., Carrion-Vazquez, M., Oberhauser, A.F.,

Schulten, K., and Fernandez, J.M. (1999). Mechanical unfolding intermediates

in titin modules. Nature 402, 100–103.

McFerran, B.W., Weiss, J.L., and Burgoyne, R.D. (1999). Neuronal Ca(2+)

sensor 1. Characterization of the myristoylated protein, its cellular effects in

permeabilized adrenal chromaffin cells, Ca(2+)-independent membrane asso-

ciation, and interaction with binding proteins, suggesting a role in rapid Ca(2+)

signal transduction. J. Biol. Chem. 274, 30258–30265.

Mikhaylova, M., Hradsky, J., and Kreutz, M.R. (2011). Between promiscuity

and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+

signalling. J. Neurochem. 118, 695–713.

Mukherjee, S., Mohan, P.M., Kuchroo, K., and Chary, K.V. (2007).

Energetics of the native energy landscape of a two-domain calcium sensor

protein: distinct folding features of the two domains. Biochemistry 46, 9911–

9919.

Muralidhar, D., Jobby, M.K., Krishnan, K., Annapurna, V., Chary, K.V.,

Jeromin, A., and Sharma, Y. (2005). Equilibrium unfolding of neuronal calcium

sensor-1: N-terminal myristoylation influences unfolding and reduces protein

stiffening in the presence of calcium. J. Biol. Chem. 280, 15569–15578.

Nakamura, T.Y., Jeromin, A., Mikoshiba, K., and Wakabayashi, S. (2011).

Neuronal calcium sensor-1 promotes immature heart function and hypertro-

phy by enhancing Ca2+ signals. Circ. Res. 109, 512–523.

Nelson, M.R., Chagot, B., and Chazin, W.J. (2001). EF-Hand Calcium-Binding

Proteins (New York: John Wiley & Sons).

Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,
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